
Neural Network Training with Approximate Logarithmic
Computations1

International Conference on Acoustics, Speech and Signal Processing

Arnab Sanyal, Peter A. Beerel, Keith M. Chugg

Ming Hsieh Department of Electrical & Computer Engineering
University of Southern California

Los Angeles, CA, USA

Virtual Tele-conference Presentation, May 2020

1
Supported in part by the National Science Foundation (CCF-1763747).

Sanyal et al. IEEE ICASSP 2020 May 2020 1 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS

In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive

Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 2 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS independently invented and published as an alternative to
floating-point number system2

Extensively explored in communications3, processor design4,
re-configurable architectures5, and a number of signal processing
applications6

Explored in context of back-propagation but prior to resurgence of
neural networks7

2 DOI: 10.1109/TC.1979.1675442 2 DOI: 10.1109/T-C.1975.224172

Sanyal et al. IEEE ICASSP 2020 May 2020 3 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS independently invented and published as an alternative to
floating-point number system2

Extensively explored in communications3, processor design4,
re-configurable architectures5, and a number of signal processing
applications6

Explored in context of back-propagation but prior to resurgence of
neural networks7

2 DOI: 10.1109/TC.1979.1675442
4 DOI: 10.1109/ARITH.2011.15

2 DOI: 10.1109/T-C.1975.224172
5 DOI: 10.1109/FPT.2006.270342

3 DOI: 10.1109/ICC.1995.524253
6 DOI: 10.1049/el:19710039

Sanyal et al. IEEE ICASSP 2020 May 2020 3 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS independently invented and published as an alternative to
floating-point number system2

Extensively explored in communications3, processor design4,
re-configurable architectures5, and a number of signal processing
applications6

Explored in context of back-propagation but prior to resurgence of
neural networks7

2 DOI: 10.1109/TC.1979.1675442
4 DOI: 10.1109/ARITH.2011.15

2 DOI: 10.1109/T-C.1975.224172
5 DOI: 10.1109/FPT.2006.270342
7 DOI: 10.1109/ICNN.1997.616150

3 DOI: 10.1109/ICC.1995.524253
6 DOI: 10.1049/el:19710039

Sanyal et al. IEEE ICASSP 2020 May 2020 3 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS encoded weights for inference8 and extensions to LNS MACs
restricted to positive numbers9

Log-encoding on posits relying on conversions to and from linear
domain to perform additions10

LNS circuit implementation for inference on pre-trained recurrent
neural network11

8 DOI: 10.1109/ICASSP.2017.7953288
9 arXiv: 1603.01025

Sanyal et al. IEEE ICASSP 2020 May 2020 4 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS encoded weights for inference8 and extensions to LNS MACs
restricted to positive numbers9

Log-encoding on posits relying on conversions to and from linear
domain to perform additions10

LNS circuit implementation for inference on pre-trained recurrent
neural network11

8 DOI: 10.1109/ICASSP.2017.7953288
10 arXiv: 1811.01721

9 arXiv: 1603.01025

Sanyal et al. IEEE ICASSP 2020 May 2020 4 / 20

Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS encoded weights for inference8 and extensions to LNS MACs
restricted to positive numbers9

Log-encoding on posits relying on conversions to and from linear
domain to perform additions10

LNS circuit implementation for inference on pre-trained recurrent
neural network11

8 DOI: 10.1109/ICASSP.2017.7953288
10 arXiv: 1811.01721

9 arXiv: 1603.01025
11 DOI: 10.1109/MOCAST.2018.8376572

Sanyal et al. IEEE ICASSP 2020 May 2020 4 / 20

LNS Neural Network Pipeline
Neural Network Training with Approximate Logarithmic Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 5 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Equivalence
v ←→ V = (V , sv)

V = log2 (|v |)
sv = sign(v)

Multiplication u = xy ←→ U = X � Y

U = X + Y

su = (sx Y sy)

Sanyal et al. IEEE ICASSP 2020 May 2020 6 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Equivalence
v ←→ V = (V , sv)

V = log2 (|v |)
sv = sign(v)

Multiplication u = xy ←→ U = X � Y

U = X + Y

su = (sx Y sy)

Sanyal et al. IEEE ICASSP 2020 May 2020 6 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Addition

z = x + y ←→ Z = X � Y

Z =

{
max(X ,Y) + ∆+ (|X − Y |) sx = sy

max(X ,Y) + ∆− (|X − Y |) sx 6= sy

sz =

{
sx X > Y

sy X ≤ Y

∆+(d) = log2

(
1 + 2−d

)
d ≥ 0

∆−(d) = log2

(
1− 2−d

)
d ≥ 0

Sanyal et al. IEEE ICASSP 2020 May 2020 7 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Addition

z = x + y ←→ Z = X � Y

Z =

{
max(X ,Y) + ∆+ (|X − Y |) sx = sy

max(X ,Y) + ∆− (|X − Y |) sx 6= sy

sz =

{
sx X > Y

sy X ≤ Y

∆+(d) = log2

(
1 + 2−d

)
d ≥ 0

∆−(d) = log2

(
1− 2−d

)
d ≥ 0

Sanyal et al. IEEE ICASSP 2020 May 2020 7 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations

Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy)

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations

Sanyal et al. IEEE ICASSP 2020 May 2020 8 / 20

Visualizing ∆ from LNS � Additions
Neural Network Training with Approximate Logarithmic Computations

Sanyal et al. IEEE ICASSP 2020 May 2020 9 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0
Resolution is a hyper-parameter
Fixed-point width is a hyper-parameter

Sanyal et al. IEEE ICASSP 2020 May 2020 10 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0
Resolution is a hyper-parameter
Fixed-point width is a hyper-parameter

Sanyal et al. IEEE ICASSP 2020 May 2020 10 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0

Resolution is a hyper-parameter
Fixed-point width is a hyper-parameter

Sanyal et al. IEEE ICASSP 2020 May 2020 10 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0
Resolution is a hyper-parameter

Fixed-point width is a hyper-parameter

Sanyal et al. IEEE ICASSP 2020 May 2020 10 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0
Resolution is a hyper-parameter
Fixed-point width is a hyper-parameter

Sanyal et al. IEEE ICASSP 2020 May 2020 10 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

LUT Resolution r = 1
2

LUT Resolution r = 1
8

Sanyal et al. IEEE ICASSP 2020 May 2020 11 / 20

Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

LUT Resolution r = 1
2 LUT Resolution r = 1

8

Sanyal et al. IEEE ICASSP 2020 May 2020 11 / 20

Bit-Shift Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Taylor Series
approximation

loge (1± x) ≈ ±x 0 ≤ x � 1

∆±(d) = log2

(
1± 2−d

)
≈ ± log2 e × 2−d

Further Simplification log2 e = 1.442695 · · · ≈ 1.4375 = 20 + 2−1 − 2−4

≈ 1.5 = 20 + 2−1

≈ 1 = 20

Sanyal et al. IEEE ICASSP 2020 May 2020 12 / 20

Bit-Shift Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Taylor Series
approximation

loge (1± x) ≈ ±x 0 ≤ x � 1

∆±(d) = log2

(
1± 2−d

)
≈ ± log2 e × 2−d

Further Simplification log2 e = 1.442695 · · · ≈ 1.4375 = 20 + 2−1 − 2−4

≈ 1.5 = 20 + 2−1

≈ 1 = 20

Sanyal et al. IEEE ICASSP 2020 May 2020 12 / 20

Bit-Shift Based Approximations
Neural Network Training with Approximate Logarithmic Computations

∆+(d) ≈ BS (1,−d)

∆−(d) ≈ −BS (1.5,−d)

Can be thought of as a LUT with r = 1

Sanyal et al. IEEE ICASSP 2020 May 2020 13 / 20

The LNS Neuron
Neural Network Training with Approximate Logarithmic Computations

Multiply accumulate
(MAC)

zi =
∑
j

wijxj + bi ←→ Z i =�
j
W ij � X j � B i

LNS bit-width
Constraint

Wlog ≥ 1 + max
(
dlog2

(
bi + 1

)
e, dlog2 bf e

)
+Wlin

Experiments suggest that Wlog ≈Wlin suffices in
practice. In this work, set Wlog = Wlin

Sanyal et al. IEEE ICASSP 2020 May 2020 14 / 20

The LNS Neuron
Neural Network Training with Approximate Logarithmic Computations

Multiply accumulate
(MAC) zi =

∑
j

wijxj + bi ←→ Z i =�
j
W ij � X j � B i

LNS bit-width
Constraint

Wlog ≥ 1 + max
(
dlog2

(
bi + 1

)
e, dlog2 bf e

)
+Wlin

Experiments suggest that Wlog ≈Wlin suffices in
practice. In this work, set Wlog = Wlin

Sanyal et al. IEEE ICASSP 2020 May 2020 14 / 20

The LNS Neuron
Neural Network Training with Approximate Logarithmic Computations

Multiply accumulate
(MAC) zi =

∑
j

wijxj + bi ←→ Z i =�
j
W ij � X j � B i

LNS bit-width
Constraint

Wlog ≥ 1 + max
(
dlog2

(
bi + 1

)
e, dlog2 bf e

)
+Wlin

Experiments suggest that Wlog ≈Wlin suffices in
practice. In this work, set Wlog = Wlin

Sanyal et al. IEEE ICASSP 2020 May 2020 14 / 20

The LNS Neuron
Neural Network Training with Approximate Logarithmic Computations

Multiply accumulate
(MAC) zi =

∑
j

wijxj + bi ←→ Z i =�
j
W ij � X j � B i

LNS bit-width
Constraint

Wlog ≥ 1 + max
(
dlog2

(
bi + 1

)
e, dlog2 bf e

)
+Wlin

Experiments suggest that Wlog ≈Wlin suffices in
practice. In this work, set Wlog = Wlin

Sanyal et al. IEEE ICASSP 2020 May 2020 14 / 20

LNS Weight Initialization
Neural Network Training with Approximate Logarithmic Computations

To avoid hundreds of thousands of parameter initialization on prior
distribution and taking logarithm of them, use standard change of
measure approaches from probability to derive desired distribution

Weights generally initialized from symmetric distributions. Hence the
sign parameter can be initialized randomly and independently of the
magnitude from a Bernoulli(12) distribution.

The magnitude distribution for weights reduce to,

fW (y) = 2y+1 × loge 2× fw (2y)

Sanyal et al. IEEE ICASSP 2020 May 2020 15 / 20

LNS Weight Initialization
Neural Network Training with Approximate Logarithmic Computations

To avoid hundreds of thousands of parameter initialization on prior
distribution and taking logarithm of them, use standard change of
measure approaches from probability to derive desired distribution

Weights generally initialized from symmetric distributions. Hence the
sign parameter can be initialized randomly and independently of the
magnitude from a Bernoulli(12) distribution.

The magnitude distribution for weights reduce to,

fW (y) = 2y+1 × loge 2× fw (2y)

Sanyal et al. IEEE ICASSP 2020 May 2020 15 / 20

LNS Weight Initialization
Neural Network Training with Approximate Logarithmic Computations

To avoid hundreds of thousands of parameter initialization on prior
distribution and taking logarithm of them, use standard change of
measure approaches from probability to derive desired distribution

Weights generally initialized from symmetric distributions. Hence the
sign parameter can be initialized randomly and independently of the
magnitude from a Bernoulli(12) distribution.

The magnitude distribution for weights reduce to,

fW (y) = 2y+1 × loge 2× fw (2y)

Sanyal et al. IEEE ICASSP 2020 May 2020 15 / 20

The Log-Leaky ReLU Activation
Neural Network Training with Approximate Logarithmic Computations

Parametric ReLU

First proposed in ICCV 201512, fixes the Dying
ReLU problem

Attractive to this research as Dying ReLU
could make activations ∞ in LNS

This brings us to Log-Leaky ReLU

gllReLU

(
(X , sx)

∣∣β) =

{
(X , sx) sx = 1

(X + β, sx) sx = 0

Sanyal et al. IEEE ICASSP 2020 May 2020 16 / 20

The Log-Leaky ReLU Activation
Neural Network Training with Approximate Logarithmic Computations

Parametric ReLU

First proposed in ICCV 201512, fixes the Dying
ReLU problem

Attractive to this research as Dying ReLU
could make activations ∞ in LNS

This brings us to Log-Leaky ReLU

gllReLU

(
(X , sx)

∣∣β) =

{
(X , sx) sx = 1

(X + β, sx) sx = 0

12 DOI: 10.1109/ICCV.2015.123

Sanyal et al. IEEE ICASSP 2020 May 2020 16 / 20

The Log-Leaky ReLU Activation
Neural Network Training with Approximate Logarithmic Computations

Parametric ReLU

First proposed in ICCV 201512, fixes the Dying
ReLU problem

Attractive to this research as Dying ReLU
could make activations ∞ in LNS

This brings us to Log-Leaky ReLU

gllReLU

(
(X , sx)

∣∣β) =

{
(X , sx) sx = 1

(X + β, sx) sx = 0

12 DOI: 10.1109/ICCV.2015.123

Sanyal et al. IEEE ICASSP 2020 May 2020 16 / 20

The Log-Leaky ReLU Activation
Neural Network Training with Approximate Logarithmic Computations

Parametric ReLU

First proposed in ICCV 201512, fixes the Dying
ReLU problem

Attractive to this research as Dying ReLU
could make activations ∞ in LNS

This brings us to Log-Leaky ReLU

gllReLU

(
(X , sx)

∣∣β) =

{
(X , sx) sx = 1

(X + β, sx) sx = 0

12 DOI: 10.1109/ICCV.2015.123

Sanyal et al. IEEE ICASSP 2020 May 2020 16 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation

pij =
eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation
pij =

eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation
pij =

eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities

log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation
pij =

eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation
pij =

eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients

(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation
pij =

eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)

Sanyal et al. IEEE ICASSP 2020 May 2020 17 / 20

Numerical Results
Neural Network Training with Approximate Logarithmic Computations

Number of epochs trained = 20
Size of tables = 20(r = 1

2); soft-max
uses 640 element tables(r = 1

64)
Table shows test-set accuracy

Sanyal et al. IEEE ICASSP 2020 May 2020 18 / 20

Numerical Results
Neural Network Training with Approximate Logarithmic Computations

Number of epochs trained = 20
Size of tables = 20(r = 1

2); soft-max
uses 640 element tables(r = 1

64)
Table shows test-set accuracy

Sanyal et al. IEEE ICASSP 2020 May 2020 18 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization

Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations

Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)

Sanyal et al. IEEE ICASSP 2020 May 2020 19 / 20

Acknowledgements

This work is supported in part by the National Science Foundation (CCF-1763747)

Sanyal et al. IEEE ICASSP 2020 May 2020 20 / 20

