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Goals
Neural Network Training with Approximate Logarithmic Computations

Enabling Neural Network training on edge-devices.

Computation reduction is of paramount importance.

Variety of approaches already exist - sparsity, pruning, quantization.

Our method – design end-to-end training in a logarithmic number
system (LNS).

All NN operations needs to be defined in LNS
In LNS multiplications are cheap but addition are computationally
expensive
Resort to Approximate Logarithmic Fixed-Point Computations
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Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS independently invented and published as an alternative to
floating-point number system2

Extensively explored in communications3, processor design4,
re-configurable architectures5, and a number of signal processing
applications6

Explored in context of back-propagation but prior to resurgence of
neural networks7

2 DOI: 10.1109/TC.1979.1675442 2 DOI: 10.1109/T-C.1975.224172
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Motivations and Previous Research in LNS
Neural Network Training with Approximate Logarithmic Computations

LNS encoded weights for inference8 and extensions to LNS MACs
restricted to positive numbers9

Log-encoding on posits relying on conversions to and from linear
domain to perform additions10

LNS circuit implementation for inference on pre-trained recurrent
neural network11

8 DOI: 10.1109/ICASSP.2017.7953288
9 arXiv: 1603.01025
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LNS Neural Network Pipeline
Neural Network Training with Approximate Logarithmic Computations
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Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Equivalence
v ←→ V = (V , sv )

V = log2 (|v |)
sv = sign(v)

Multiplication u = xy ←→ U = X � Y

U = X + Y

su = (sx Y sy )
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Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Addition

z = x + y ←→ Z = X � Y

Z =

{
max(X ,Y ) + ∆+ (|X − Y |) sx = sy

max(X ,Y ) + ∆− (|X − Y |) sx 6= sy

sz =

{
sx X > Y

sy X ≤ Y

∆+(d) = log2

(
1 + 2−d

)
d ≥ 0

∆−(d) = log2

(
1− 2−d

)
d ≥ 0
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Mathematical Operations
Neural Network Training with Approximate Logarithmic Computations

Subtraction
t = x − y ←→ T = X � Y = X � (Y , sy )

Exponentiation w = xy ←→W = (yX , 1)

Approximate additions

Approximate ∆ to reduce addition computation complexity

Two different approximations explored

Look-Up Table (LUT) based approximations
Bit-shift (BS) based approximations
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Visualizing ∆ from LNS � Additions
Neural Network Training with Approximate Logarithmic Computations
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Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Idea - Store the ∆ terms as a Look-Up Table (LUT)

LUT specified by three parameters – fixed point width, dynamic
range, resolution

Dynamic range determined by fixed point width as ∆ terms die down
to 0
Resolution is a hyper-parameter
Fixed-point width is a hyper-parameter
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Look-Up Table Based Approximations
Neural Network Training with Approximate Logarithmic Computations

LUT Resolution r = 1
2

LUT Resolution r = 1
8
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Bit-Shift Based Approximations
Neural Network Training with Approximate Logarithmic Computations

Taylor Series
approximation

loge (1± x) ≈ ±x 0 ≤ x � 1

∆±(d) = log2

(
1± 2−d

)
≈ ± log2 e × 2−d

Further Simplification log2 e = 1.442695 · · · ≈ 1.4375 = 20 + 2−1 − 2−4

≈ 1.5 = 20 + 2−1

≈ 1 = 20
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Bit-Shift Based Approximations
Neural Network Training with Approximate Logarithmic Computations

∆+(d) ≈ BS (1,−d)

∆−(d) ≈ −BS (1.5,−d)

Can be thought of as a LUT with r = 1

Sanyal et al. IEEE ICASSP 2020 May 2020 13 / 20



The LNS Neuron
Neural Network Training with Approximate Logarithmic Computations

Multiply accumulate
(MAC)

zi =
∑
j

wijxj + bi ←→ Z i =�
j
W ij � X j � B i

LNS bit-width
Constraint

Wlog ≥ 1 + max
(
dlog2

(
bi + 1

)
e, dlog2 bf e

)
+Wlin

Experiments suggest that Wlog ≈Wlin suffices in
practice. In this work, set Wlog = Wlin
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LNS Weight Initialization
Neural Network Training with Approximate Logarithmic Computations

To avoid hundreds of thousands of parameter initialization on prior
distribution and taking logarithm of them, use standard change of
measure approaches from probability to derive desired distribution

Weights generally initialized from symmetric distributions. Hence the
sign parameter can be initialized randomly and independently of the
magnitude from a Bernoulli(12) distribution.

The magnitude distribution for weights reduce to,

fW (y) = 2y+1 × loge 2× fw (2y )
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The Log-Leaky ReLU Activation
Neural Network Training with Approximate Logarithmic Computations

Parametric ReLU

First proposed in ICCV 201512, fixes the Dying
ReLU problem

Attractive to this research as Dying ReLU
could make activations ∞ in LNS

This brings us to Log-Leaky ReLU

gllReLU

(
(X , sx)

∣∣β) =

{
(X , sx) sx = 1

(X + β, sx) sx = 0
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LNS Soft-Max
Neural Network Training with Approximate Logarithmic Computations

Gradient calculation

pij =
eaij∑N
j=1 e

aij

δij = pij − yij

Log-probabilities log2 pij = (aij log2 e)−
N

�
j=1

(aij log2 e, 1)

LNS gradients
(
log2 |δij | , sδij

)
= P ij �

(
log2 |yij | , syij

)
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Numerical Results
Neural Network Training with Approximate Logarithmic Computations

Number of epochs trained = 20
Size of tables = 20(r = 1

2 ); soft-max
uses 640 element tables(r = 1

64 )
Table shows test-set accuracy
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Future Works
Neural Network Training with Approximate Logarithmic Computations

Extend Future work to CNNs on harder datasets

Better Approximation Design

Functional Approximations using constrained optimization
Replacing Soft-max Layer with multi-class Sigmoid

Reliability and Robustness Analysis

Cost-Accuracy trade-off across different approximations
Weight-Activation Relation mapping for LNS-neurons using Supervised
Learning (LDA, QDA)
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