

EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices

International Conference on Acoustics, Speech and Signal Processing

Arnab Sanyal^{1†}, Prithwish Mukherjee[‡], Gourav Datta[§],
Sandeep P. Chinchali[†], Michael Orshansky[†]

[§]Case Western Reserve
University
Cleaveland, OH, USA

[‡]Georgia Institute of
Technology
Atlanta, GA, USA

[†]University of Texas
Austin, TX, USA

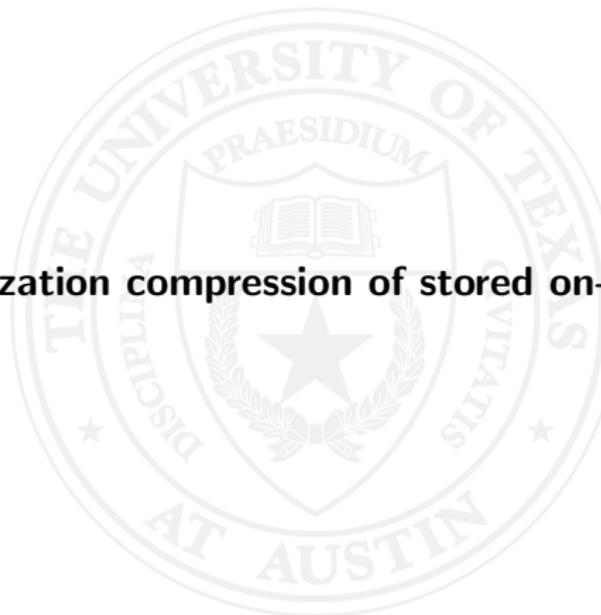
May 2026

¹Corresponding Author – sanyal@utexas.edu

Goals

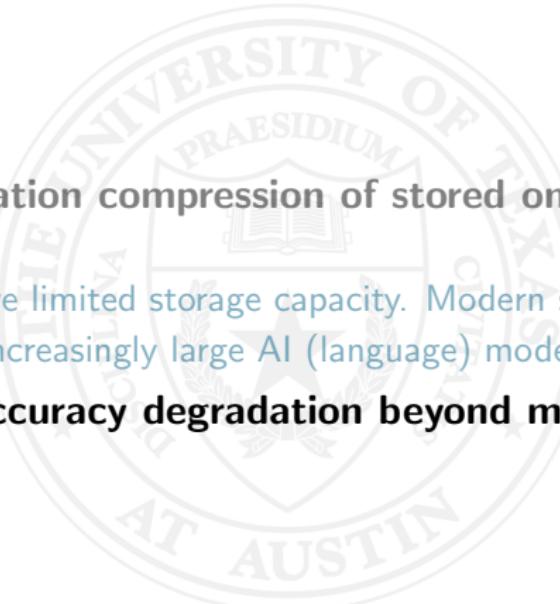
EntroLLM

1. **Beyond-quantization compression of stored on-(edge)-device model weights**



1. Beyond-quantization compression of stored on-(edge)-device model weights

Edge devices have limited storage capacity. Modern system and user applications have increasingly large AI (language) models.



- 1. Beyond-quantization compression of stored on-(edge)-device model weights**

Edge devices have limited storage capacity. Modern system and user applications have increasingly large AI (language) models.
- 2. No additional accuracy degradation beyond mere quantization effects**

1. Beyond-quantization compression of stored on-(edge)-device model weights

Edge devices have limited storage capacity. Modern system and user applications have increasingly large AI (language) models.

2. No additional accuracy degradation beyond mere quantization effects

Additional compression must not compromise lightweight LLM performance.

1. Beyond-quantization compression of stored on-(edge)-device model weights

Edge devices have limited storage capacity. Modern system and user applications have increasingly large AI (language) models.

2. No additional accuracy degradation beyond mere quantization effects

Additional compression must not compromise lightweight LLM performance.

3. Uncompressing + token generation has competitive latency

1. Beyond-quantization compression of stored on-(edge)-device model weights

Edge devices have limited storage capacity. Modern system and user applications have increasingly large AI (language) models.

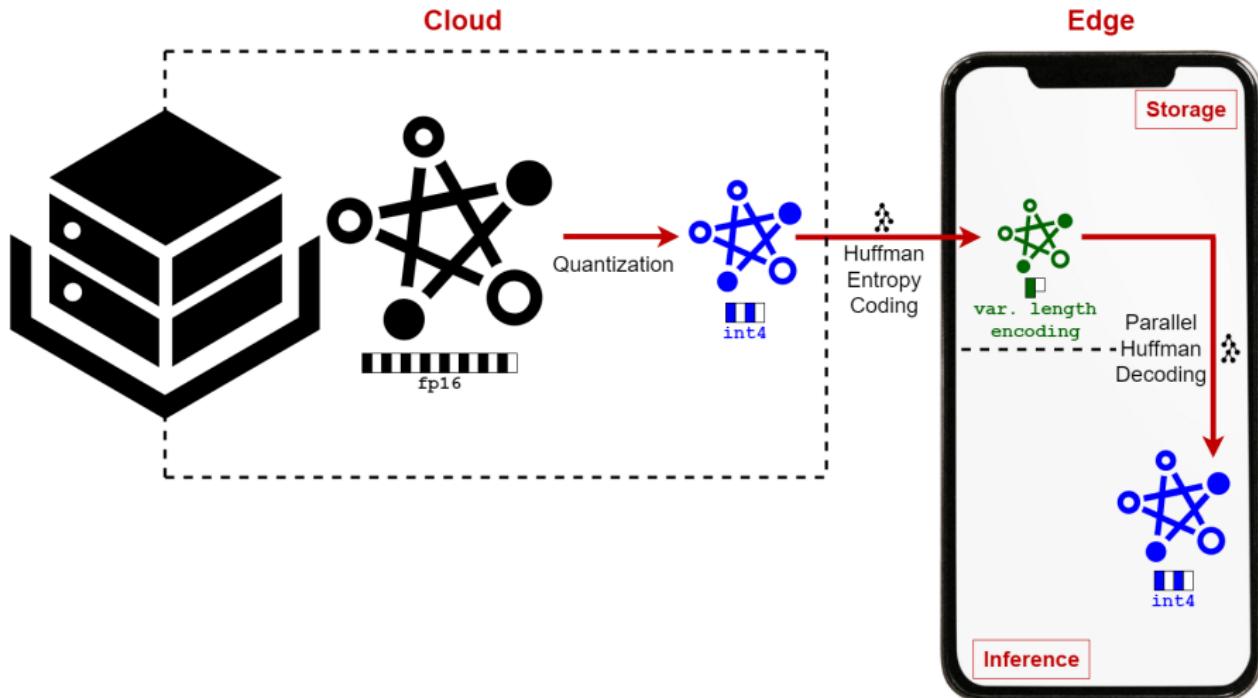
2. No additional accuracy degradation beyond mere quantization effects

Additional compression must not compromise lightweight LLM performance.

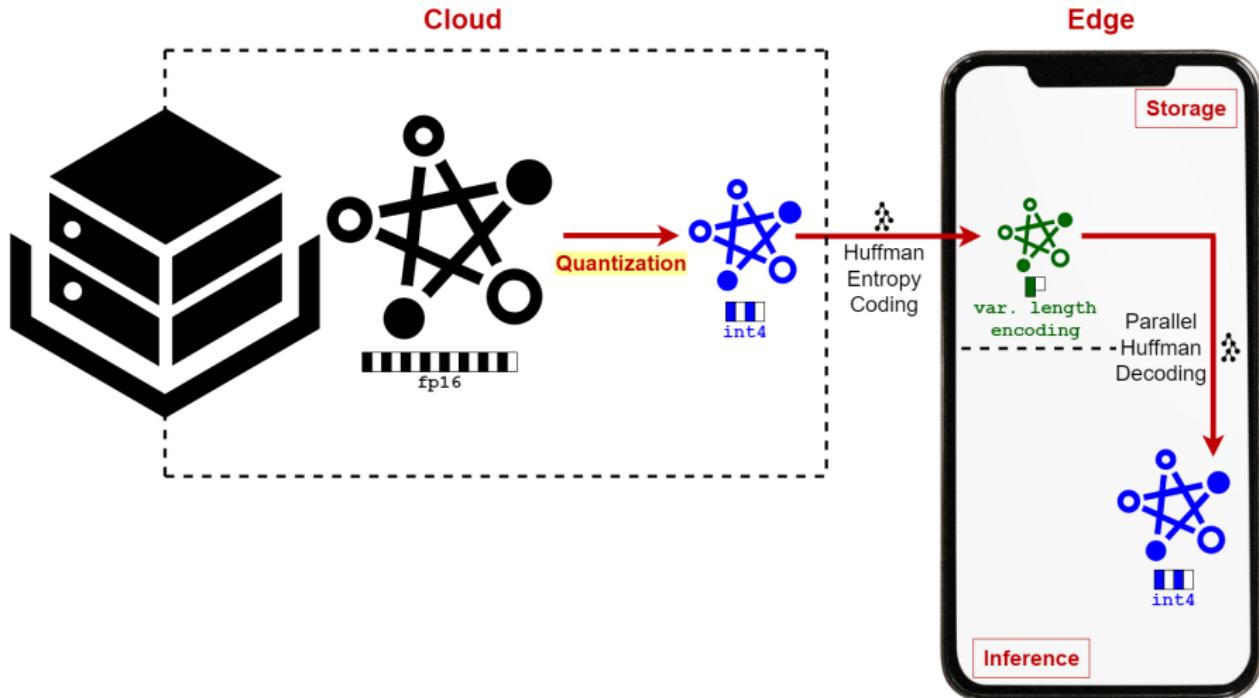
3. Uncompressing + token generation has competitive latency

The token generation rate should not fall below a certain threshold to avoid hampering quality of service (QoS).

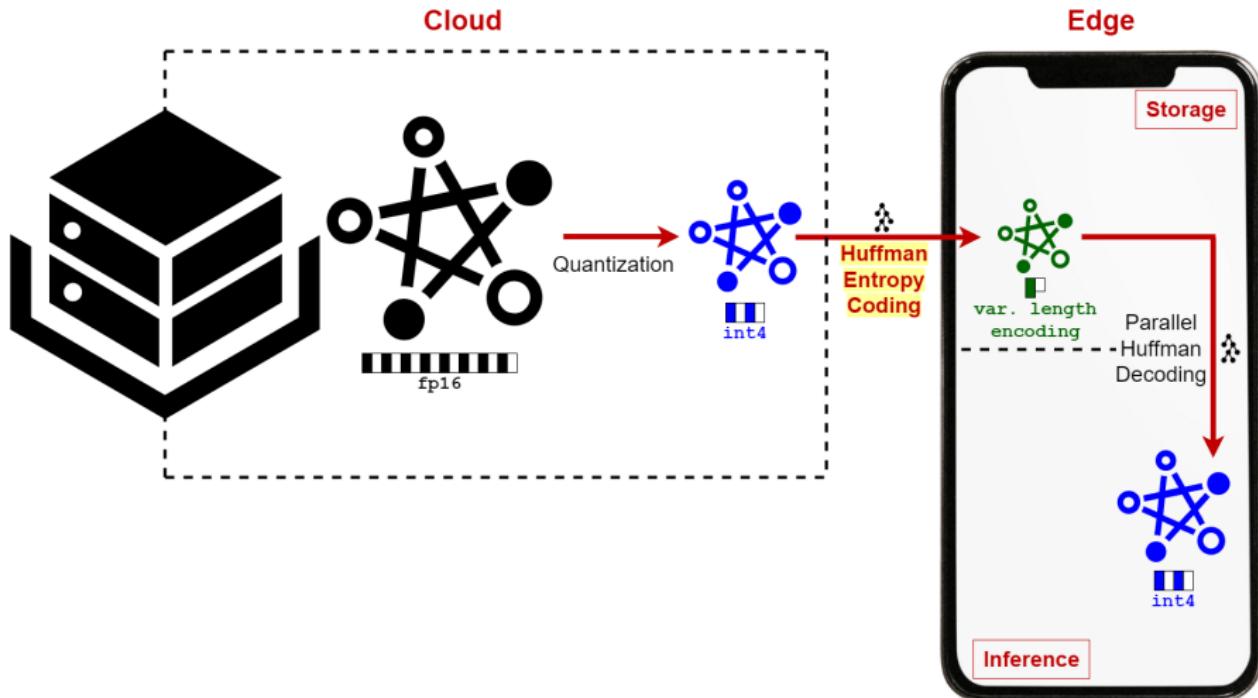
Schematic EntroLLM



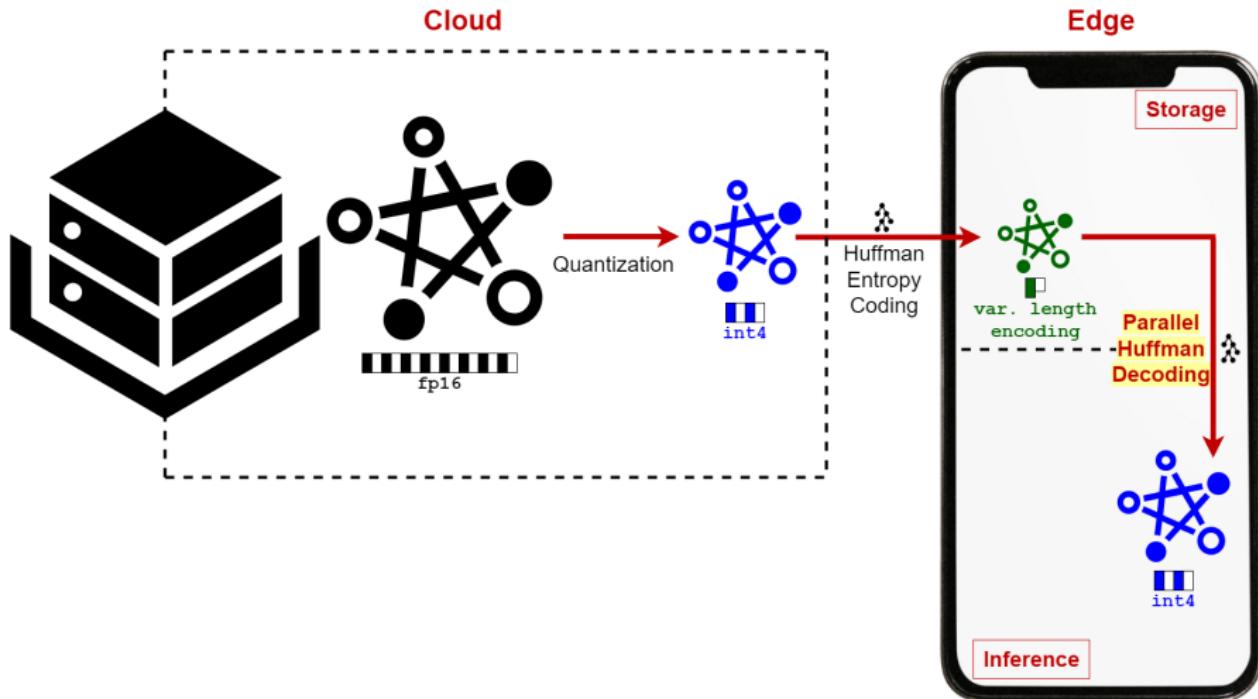
Schematic EntroLLM



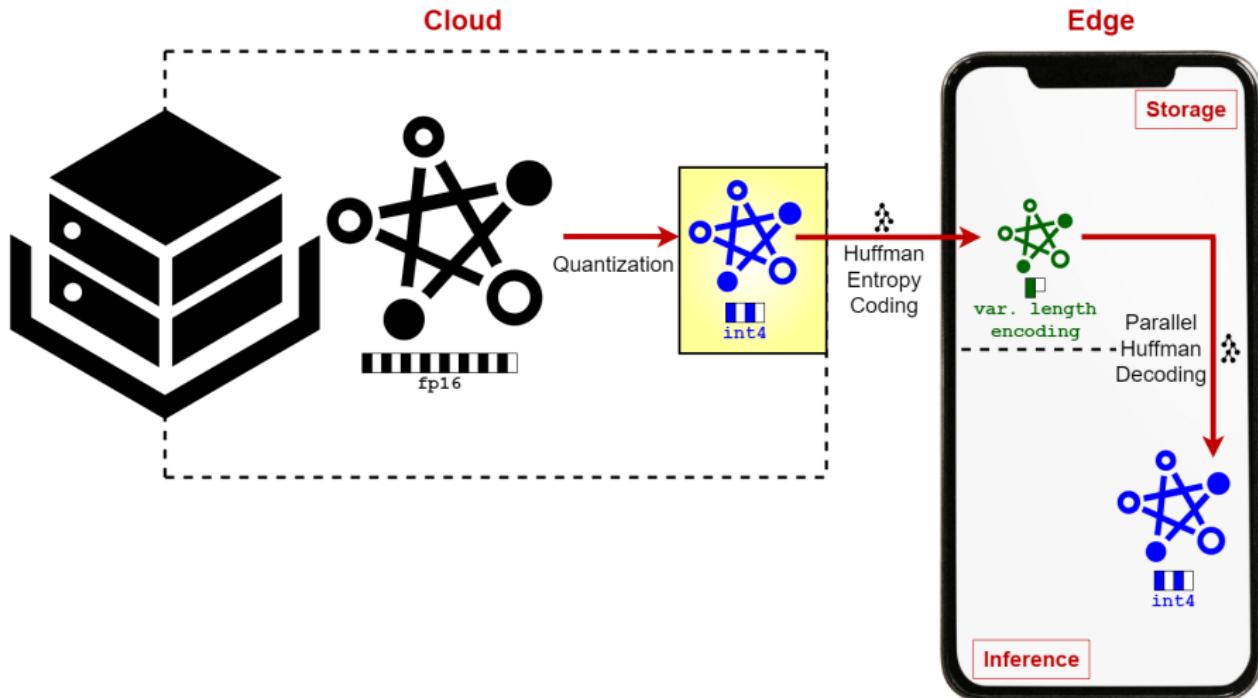
Schematic EntroLLM



Schematic EntroLLM



Schematic EntroLLM



Mixed Quantization Scheme

EntroLLM

1. **Fact:** Layer-wise, trained weights distribution follows a bell-shaped curve.²

²DOI: 10.5555/3454287.3455001

Mixed Quantization Scheme

EntroLLM

1. **Fact:** Layer-wise, trained weights distribution follows a bell-shaped curve.²
2. After quantization, individual layers will retain their original distribution, and the entropy of these distributions is quite high.

²DOI: 10.5555/3454287.3455001

Mixed Quantization Scheme

EntroLLM

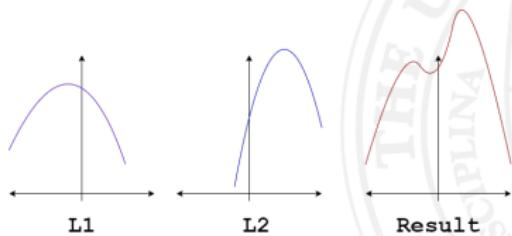
1. **Fact:** Layer-wise, trained weights distribution follows a bell-shaped curve.²
2. After quantization, individual layers will retain their original distribution, and the entropy of these distributions is quite high.
3. The entropy of distribution of all weights in the model is even higher. As such, Huffman compression will give little benefit.

²DOI: 10.5555/3454287.3455001

If we can somehow map various layers' floating point grids to different integer grids, such that each layer's quantized weight distributions add up to give rise to a very low entropy, high skew distribution, then we can greatly enhance compressibility.

Mixed Quantization Scheme

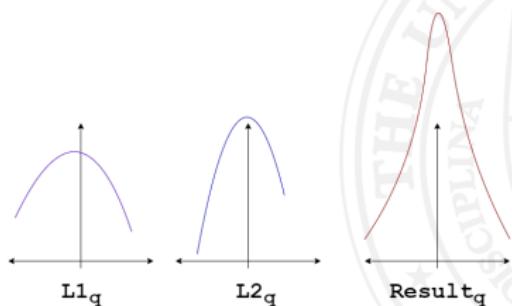
EntroLLM



Different layers may have different distributions, and the resulting overall distribution can have a high entropy

Mixed Quantization Scheme

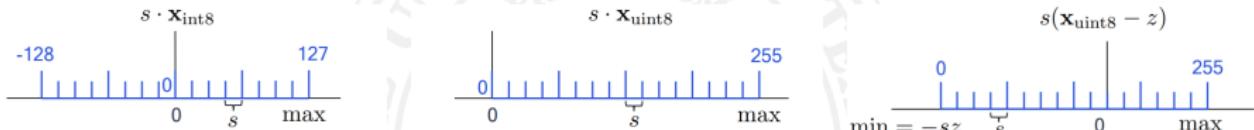
EntroLLM



Through different quantization schemes, shifting distributions on a case-by-case basis allows us to skew the overall distribution, thus inducing a low entropy.

Mixed Quantization Scheme

EntroLLM



A visual explanation of the different uniform quantization grids³ for a bit-width of 8. s is the scaling factor, z the zero-point. The floating-point grid is in black, and the integer-quantized grid is in blue. In our work, we use either an unsigned or an asymmetric quantization scheme on each layer based on the individual layer's weight distribution.

²DOI: 10.5555/3454287.3455001

³arXiv: 2106.08295

Quantization Algorithm

EntroLLM

for each layer k in the model do

if $W_{fp}^k|_{\max} \times W_{fp}^k|_{\min} \geq 0$ then

$$W_{int}^k \leftarrow \left\lfloor \frac{W_{fp}^k}{s} \right\rfloor$$

▷ Unsigned

else

$$W_{int}^k \leftarrow \left\lfloor \frac{(W_{fp}^k - z)}{s} \right\rfloor$$

▷ Asymmetric

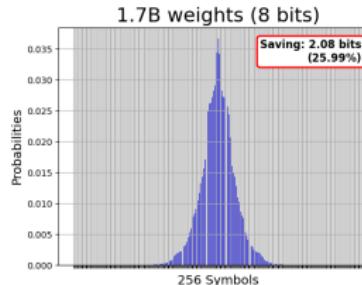
▷ z is zero-point, s is scaling factor

end if

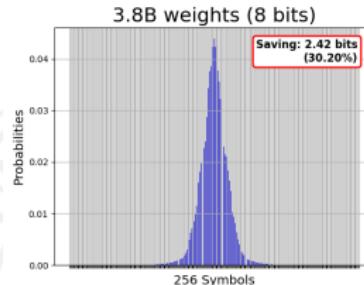
end for

Model Parameter Distribution

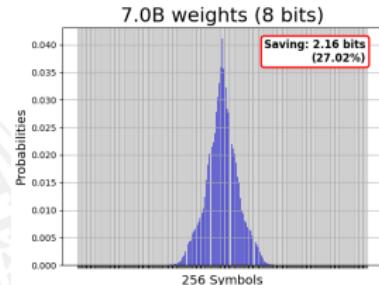
EntroLLM



(a) smollM-1.7B-Instruct



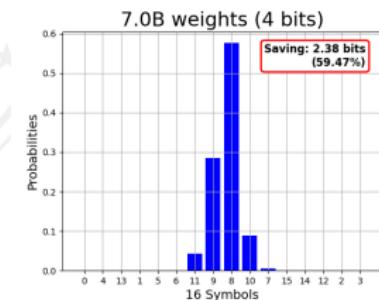
(b) phi3-mini-4k-Instruct



(c) mistral-7B-Instruct

(d) smollM-1.7B-Instruct

(e) phi3-mini-4k-Instruct



(f) mistral-7B-Instruct

Model Perplexity & Accuracy Performance

EntroLLM

PROPERTY	MODELS							
	smoLLM-Instruct			phi3-mini-4k-Instruct			mistral-Instruct	
Parameter Count	1.7 Billion			3.8 Billion			7.0 Billion	
Weight Encoding	fp16	uint8	uint4	fp16	uint8	uint4	fp16	uint8
Effective Bits	16	5.92	1.57	16	5.58	1.39	16	5.84
WIKITEXT2 (ppl.) ↓	23.81	23.93	24.14	9.03	9.44	10.10	8.17	8.24
HELLASWAG (acc.) ↑	25.85%	25.55%	25.30%	82.2%	82.10%	81.01%	58.37%	58.33%
GSM8K CoT (acc.) ↑	-	-	-	77.37%	72.84%	70.58%	52.2%	48.62%
								45.36%

Benchmarks: Perplexity and Accuracy benchmarks for smoLLM-1.7B-Instruct, phi3-mini-4k-Instruct and mistral-7B-Instruct on various language tasks

Model Compressibility

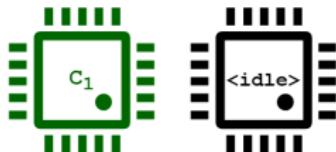
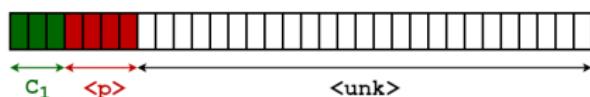
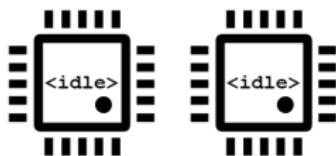
EntroLLM

PROPERTY	MODELS								
	smollM-Instruct			phi3-mini-4k-Instruct			mistral-Instruct		
Quantization Bits	8 bits								
Weight Compressibility	SOTA	ours	Improvement	SOTA	ours	Improvement	SOTA	ours	Improvement
Bits Saved	0.29	2.08	$\times 7.2$	0.30	2.42	$\times 8.1$	0.31	2.16	$\times 7.0$
Quantization Bits	4 bits								
Weight Compressibility	SOTA	ours	Improvement	SOTA	ours	Improvement	SOTA	ours	Improvement
Bits Saved	0.21	2.43	$\times 11.6$	0.20	2.61	$\times 13.1$	0.21	2.38	$\times 11.3$

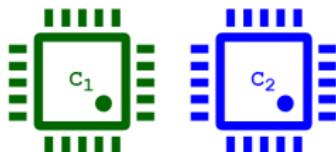
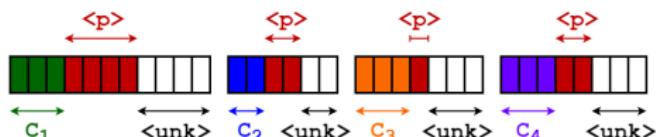
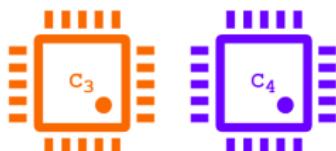
A comparison showing how our quantization scheme improves downstream entropy compressibility of weights versus SOTA quantization techniques

Weight Packing for parallel Huffman decoding

EntroLLM



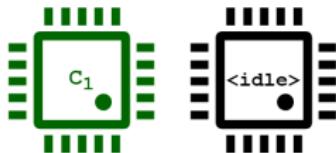
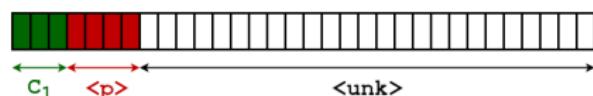
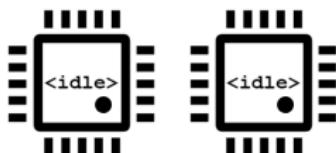
Serial Huffman Decoding



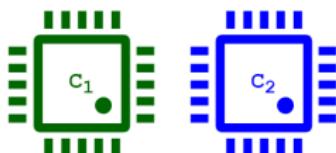
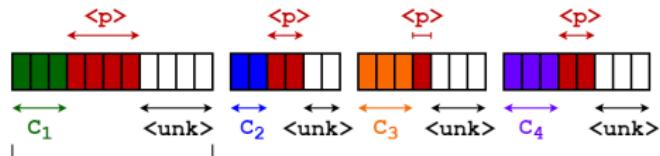
Parallel Huffman Decoding

Weight Packing for parallel Huffman decoding

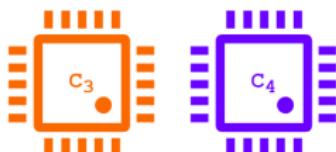
EntroLLM



Serial Huffman Decoding



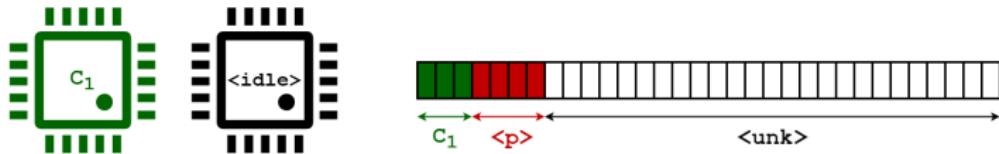
W_1



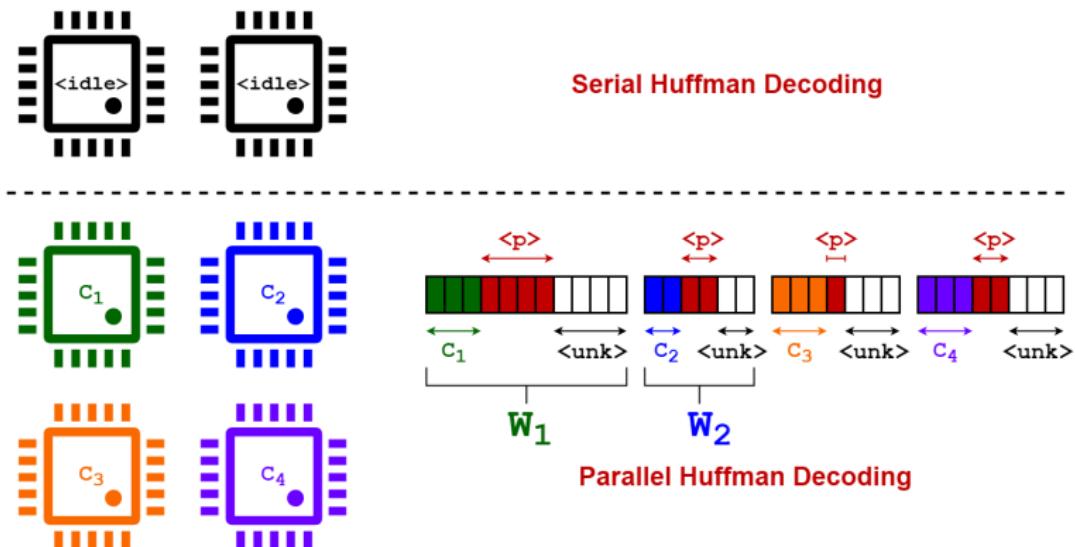
Parallel Huffman Decoding

Weight Packing for parallel Huffman decoding

EntroLLM



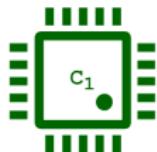
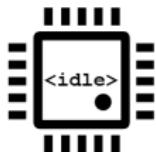
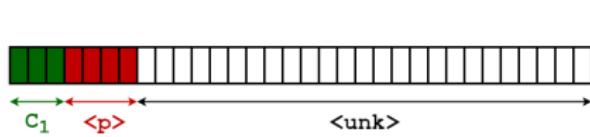
Serial Huffman Decoding



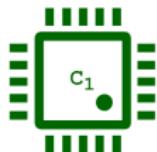
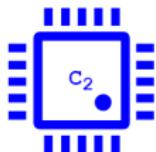
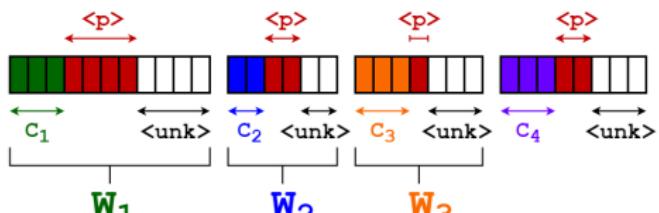
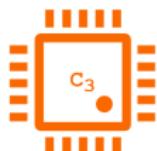
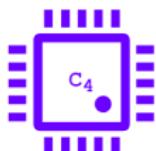
Parallel Huffman Decoding

Weight Packing for parallel Huffman decoding

EntroLLM



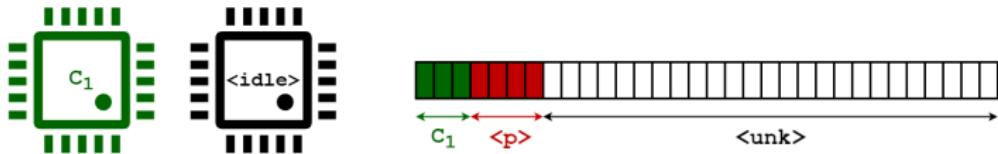
Serial Huffman Decoding



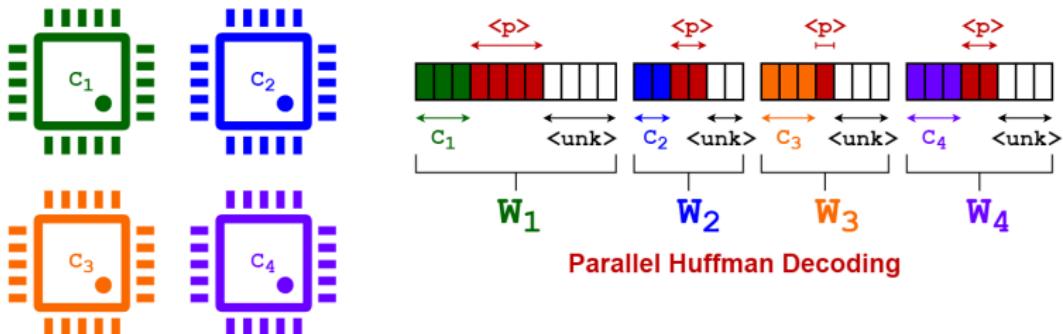
Parallel Huffman Decoding

Weight Packing for parallel Huffman decoding

EntroLLM



Serial Huffman Decoding



Parallel Huffman Decoding

Model Latency Performance

EntroLLM

TASK	ENCODING	LATENCY w/o HUFFMAN (sec)	LATENCY w/ HUFFMAN (sec)
pre-fill	uint8	27.10	23.17
token generation		0.083	0.063
parallel decoding		-	6.66
first token latency		27.18	29.89
pre-fill	uint4	9.69	8.34
token generation		0.062	0.025
parallel decoding		-	1.66
first token latency		9.75	10.03

Latency breakdown for the phi3-mini-4k model on an NVIDIA JETSON P3450 across different quantization formats (uint8 and uint4) with and without Huffman compression.

Acknowledgements

Thanks to Amir Gholami, Coleman Richard Charles Hooper, and Kurt Keutzer for their inputs during ideation.