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model weights
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1. Beyond-quantization compression of stored on-(edge)-device
model weights
Edge devices have limited storage capacity. Modern system and user

applications have increasingly large AI (language) models.

2. No additional accuracy degradation beyond mere quantization effects

Additional compression must not compromise lightweight LLM performance.

3. Uncompressing + token generation has competitive latency
The token generation rate should not fall below a certain threshold to avoid

hampering quality of service (QOS).
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Mixed Quantization Scheme
EntroLLM

1. Fact: Layer-wise, trained weights distribution follows a bell-shaped
curve.2

2. After quantization, individual layers will retain their original
distribution, and the entropy of these distributions is quite high.

3. The entropy of distribution of all weights in the model is even higher.
As such, Huffman compression will give little benefit.

2DOI: 10.5555/3454287.3455001
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Mixed Quantization Scheme
EntroLLM

If we can somehow map various layers’ floating point grids to different
integer grids, such that each layer’s quantized weight distributions add up
to give rise to a very low entropy, high skew distribution, then we can

greatly enhance compressibility.
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Mixed Quantization Scheme
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Different layers may have different dis-
tributions, and the resulting overall
distribution can have a high entropy
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Mixed Quantization Scheme
EntroLLM

Through different quantization
schemes, shifting distributions on a
case-by-case basis allows us to skew
the overall distribution, thus inducing
a low entropy.
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Mixed Quantization Scheme
EntroLLM

A visual explanation of the different uniform quantization grids3 for a bit-width of 8. s is the scaling factor, z the zero-point.
The floating-point grid is in black, and the integer-quantized grid is in blue. In our work, we use either an unsigned or an

asymmetric quantization scheme on each layer based on the individual layer’s weight distribution.

2DOI: 10.5555/3454287.3455001 3arXiv: 2106.08295
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Quantization Algorithm
EntroLLM

for each layer k in the model do
if Wkfp|max × Wkfp|min ≥ 0 then

Wkint ←
⌊
Wkfp
s

⌉
▷ Unsigned

else
Wkint ←

⌊
(Wkfp−z)

s

⌉
▷ Asymmetric

▷ z is zero-point, s is scaling factor
end if

end for
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Model Parameter Distribution
EntroLLM

(a) smolLM-1.7B-Instruct (b) phi3-mini-4k-Instruct (c) mistral-7B-Instruct

(d) smolLM-1.7B-Instruct (e) phi3-mini-4k-Instruct (f) mistral-7B-Instruct

Sanyal et al. IEEE ICASSP 2026 May 2026 6 / 11



Model Perplexity & Accuracy Performance
EntroLLM

Property
Models

smolLM-Instruct phi3-mini-4k-Instruct mistral-Instruct

Parameter Count 1.7 Billion 3.8 Billion 7.0 Billion

Weight Encoding fp16 uint8 uint4 fp16 uint8 uint4 fp16 uint8 uint4

Effective Bits 16 5.92 1.57 16 5.58 1.39 16 5.84 1.62
Wikitext2 (ppl.) ↓ 23.81 23.93 24.14 9.03 9.44 10.10 8.17 8.24 8.29

HellaSwag (acc.) ↑ 25.85% 25.55% 25.30% 82.2% 82.10% 81.01% 58.37% 58.33% 58.21%

GSM8k CoT (acc.) ↑ - - - 77.37% 72.84% 70.58% 52.2% 48.62% 45.36%

Benchmarks: Perplexity and Accuracy benchmarks for smolLM-1.7B-Instruct, phi3-mini-4k-Instruct and
mistral-7B-Instruct on various language tasks
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Model Compressibility
EntroLLM

Property
Models

smolLM-Instruct phi3-mini-4k-Instruct mistral-Instruct

Quantization Bits 8 bits

Weight Compressibility SOTA ours Improvement SOTA ours Improvement SOTA ours Improvement

Bits Saved 0.29 2.08 ×7.2 0.30 2.42 ×8.1 0.31 2.16 ×7.0
Quantization Bits 4 bits

Weight Compressibility SOTA ours Improvement SOTA ours Improvement SOTA ours Improvement

Bits Saved 0.21 2.43 ×11.6 0.20 2.61 ×13.1 0.21 2.38 ×11.3

A comparison showing how our quantization scheme improves downstream entropy compressibility of weights versus SOTA
quantization techniques
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Weight Packing for parallel Huffman decoding
EntroLLM
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Model Latency Performance
EntroLLM

Task Encoding
Latency w/o Huffman Latency w/ Huffman

(sec) (sec)

pre-fill

uint8

27.10 23.17
token generation 0.083 0.063
parallel decoding - 6.66
first token latency 27.18 29.89

pre-fill

uint4

9.69 8.34
token generation 0.062 0.025
parallel decoding - 1.66
first token latency 9.75 10.03

Latency breakdown for the phi3-mini-4k model on an NVIDIA Jetson P3450 across different quantization formats (uint8
and uint4) with and without Huffman compression.
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