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Goals
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1. Beyond-quantization compression of stored on-(edge)-device
model weights
Edge devices have limited storage capacity. Modern system and user
applications have increasingly large Al (language) models.
2. No additional accuracy degradation beyond mere quantization effects
Additional compression must not compromise lightweight LLM performance.
3. Uncompressing + token generation has competitive latency
The token generation rate should not fall below a certain threshold to avoid
hampering quality of service (QO0S).
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1. Fact: Layer-wise, trained weights distribution follows a bell-shaped
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Mixed Quantization Scheme
EntroLLM

1. Fact: Layer-wise, trained weights distribution follows a bell-shaped
curve.?

2. After quantization, individual layers will retain their original
distribution, and the entropy of these distributions is quite high.

3. The entropy of distribution of all weights in the model is even higher.

As such, Huffman compression will give little benefit.

e
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Mixed Quantization Scheme

| EntroLLM

If we can somehow map various layers’ floating point grids to different
integer grids, such that each layer's quantized weight distributions add up
to give rise to a very low entropy, high skew distribution, then we can

greatly enhance compressibility.

ICASSP:

~— Barcelona

Sanyal et al. |EEE ICASSP 2026 May 2026 4/11



R
Mixed Quantization Scheme

| EntroLLM
Different layers may have different dis-
tributions, and the resulting overall
distribution can have a high entropy
L1 L2 Result
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Mixed Quantization Scheme

| EntroLLM

Through  different  quantization
schemes, shifting distributions on a
case-by-case basis allows us to skew
the overall distribution, thus inducing

a low entropy.

Resulty
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Mixed Quantization Scheme

EntroLLM
5+ Xintg § * Xuint8 5(Xuints — 2)
-128 127 255 0 255
Livilvvolerg il ol bbb Lo bbb b |
0 s max 0 s max min=-sz § 0 max

A visual explanation of the different uniform quantization griz:ls3 for a bit-width of 8. s is the scaling factor, z the zero-point.
The floating-point grid is in black, and the integer-quantized grid is in blue. In our work, we use either an unsigned or an
asymmetric quantization scheme on each layer based on the individual layer's weight distribution.
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Quantization Algorithm

| EntroLLM

for each layer k in the model do
if wlf‘p|max X wf_zp\min > 0 then
k
WE ., [wﬂw > Unsigned

int s

else s o)
—Z d
WL {pr-‘ > Asymmetric
> z is zero-point, s is scaling factor
end if

end for
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Model Parameter Distribution
EntroLLM
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Model Perplexity & Accuracy Performance

| EntroLLM
PROPERTY Mobgrs
smolLM-Instruct phi3-mini-4k-Instruct mistral-Instruct
Parameter Count 1.7 Billion 3.8 Billion 7.0 Billion
Weight Encoding fp16 uint8 | uint4 fp16 uint8 | uint4 fp16 uint8 | uint4
Effective Bits 16 5.92 1.57 16 5.58 1.39 16 5.84 1.62
WIKITEXT2 (ppl.) | 23.81 23.93 24.14 9.03 9.44 10.10 8.17 8.24 8.29
HELLASWAG (acc.) 1 | 25.85% | 25.55% | 25.30% | 82.2% | 82.10% | 81.01% | 58.37% | 58.33% | 58.21%
GSMB8k CoT (acc.) T : ¥ - 77.37% | 72.84% | 70.58% | 52.2% | 48.62% | 45.36%

Benchmarks: Perplexity and Accuracy benchmarks for smolLM-1.7B-Instruct, phi3-mini-4k-Instruct and
mistral-7B-Instruct on various language tasks
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Model Compressibility

| EntroLLM
PROPERTY Hlobrs
smolLM-Instruct ‘ phi3-mini-4k-Instruct ‘ mistral-Instruct
Quantization Bits 8 bits
Weight Compressibility || SOTA ‘ ours ‘ Improvement ‘ SOTA ‘ ours ‘ Improvement ‘ SOTA ‘ ours ‘ Improvement
Bits Saved 0.20 | 2.08 | x7.2 [ 030 [ 2.42 | x8.1 | 031 [ 2.16 | x7.0
Quantization Bits 4 bits
Weight Compressibility | SOTA | ours | Improvement | SOTA | ours | Improvement | SOTA | ours | Improvement
Bits Saved 021 | 243 x11.6 0.20 | 2.61 x13.1 0.21 | 2.38 x11.3

A comparison showing how our quantization scheme improves downstream entropy compressibility of weights versus SOTA
quantization techniques
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Weight Packing for parallel Huffman decoding

EntroLLM
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Weight Packing for
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Weight Packing for parallel Huffman decoding
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Weight Packing for parallel Huffman decoding
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L
Model Latency Performance

| EntroLLM
LATENCY W/0 HUFFMAN | LATENCY W/ HUFFMAN

TASK ENcoDING
(sec) (sec)
pre-fill 27.10 23.17
token generation [ 0.083 0.063
parallel decoding g - 6.66
first token latency 27.18 29.89
pre-fill 9.69 8.34
token generation \ 0.062 0.025
parallel decoding Yoyt - 1.66
first token latency 9.75 10.03

Latency breakdown for the phi3-mini-4k model on an NVIDIA JETSON P3450 across different quantization formats (uint8
and uint4) with and without Huffman compression.
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